A295059 Solution of the complementary equation a(n) = 2*a(n-1) + b(n-2), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 10, 23, 51, 108, 223, 454, 917, 1845, 3702, 7417, 14848, 29711, 59438, 118893, 237804, 475627, 951274, 1902569, 3805160, 7610344, 15220713, 30441452, 60882931, 121765890, 243531809, 487063648
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3 a(2) = 2*a(1) + b(0) = 10 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 2; a[1] = 5; b[0] = 1; a[n_] := a[n] = 2 a[n - 1] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295059 *) Table[b[n], {n, 0, 10}]
Comments