A295060 Solution of the complementary equation a(n) = 2*a(n-1) - b(n-2), where a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 5, 9, 16, 28, 50, 93, 178, 346, 681, 1350, 2687, 5360, 10705, 21393, 42768, 85517, 171014, 342007, 683992, 1367961, 2735898, 5471771, 10943516, 21887005, 43773981, 87547932, 175095833, 350191634
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3 a(2) = 2*a(1) - b(0) = 9 Complement: (b(n)) = (1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 3; a[1] = 5; b[0] = 1; b[1]=2; a[n_] := a[n] = 2 a[n - 1] - b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295060 *) Table[b[n], {n, 0, 10}]
Comments