A295061 Solution of the complementary equation a(n) = 4*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 8, 17, 38, 75, 161, 310, 655, 1252, 2633, 5022, 10547, 20104, 42206, 80435, 168844, 321761, 675398, 1287067, 2701616, 5148293, 10806490, 20593199, 43225988, 82372825, 172903982
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) = 4*a(0) + b(1) = 8 Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = 4 a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295061 *) Table[b[n], {n, 0, 10}]
Comments