A295064 Solution of the complementary equation a(n) = 8*a(n-3) + b(n-1), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 14, 31, 48, 121, 258, 395, 980, 2077, 3175, 7856, 16633, 25418, 62867, 133084, 203365, 502958, 1064695, 1626944, 4023689, 8517586, 13015579, 32189540, 68140717, 104124662
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6 a(3) = 8*a(0) + b(2) = 14 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; a[n_] := a[n] = 8 a[n - 3] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295064 *) Table[b[n], {n, 0, 10}]
Comments