A295065 Solution of the complementary equation a(n) = 8*a(n-3) + b(n-2), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 12, 30, 47, 104, 249, 386, 843, 2005, 3102, 6759, 16056, 24833, 54090, 128467, 198684, 432741, 1027758, 1589495, 3461952, 8222089, 12715986, 27695643, 65776740, 101727917
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6 a(3) = 8*a(0) + b(1) = 12 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; a[n_] := a[n] = 8 a[n - 3] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295065 *) Table[b[n], {n, 0, 10}]
Comments