A295066 Solution of the complementary equation a(n) = 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 6, 11, 19, 30, 47, 70, 106, 153, 226, 321, 468, 659, 954, 1338, 1929, 2698, 3881, 5420, 7787, 10866, 15601, 21760, 31231, 43551, 62494, 87135, 125022, 174305, 250080, 348647, 500198, 697333, 1000436, 1394707, 2000914, 2789457, 4001872, 5578959, 8003790
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 2, b(0) = 2, b(1) = 4, a(2) = 2*a(0) + b(1) = 6 Complement: (b(n)) = (2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = 2 a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295066 *) Table[b[n], {n, 0, 10}]
Comments