A295067 Solution of the complementary equation a(n) = 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 4, 11, 14, 29, 36, 67, 82, 146, 177, 307, 370, 631, 758, 1281, 1536, 2583, 3094, 5189, 6212, 10403, 12450, 20833, 24928, 41696, 49887, 83424, 99807, 166882, 199649, 333801, 399336, 667641, 798712, 1335323, 1597466, 2670689, 3194976, 5341423, 6389998
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 3, b(0) = 2, b(1) = 5 a(2) = 2*a(0) + b(0) = 4 Complement: (b(n)) = (2, 5, 6, 7, 8, 9, 10, 12, 13, 15, ... )
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1]=5; a[n_] := a[n] = 2 a[n - 2] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295067 *) Table[b[n], {n, 0, 10}]
Comments