A295068 Solution of the complementary equation a(n) = 2*a(n-2) - b(n-1) + n, where a(0) = 4, a(1) = 5, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
4, 5, 8, 10, 14, 18, 25, 32, 46, 60, 87, 115, 169, 224, 332, 442, 658, 878, 1310, 1749, 2613, 3491, 5219, 6975, 10431, 13942, 20854, 27876, 41700, 55744, 83392, 111480, 166776, 222952, 333544, 445896, 667080, 891784, 1334151, 1783559, 2668293, 3567109
Offset: 0
Examples
a(0) = 4, a(1) = 5, b(0) = 1 a(2) = 2*a(0) - b(1) + 2 = 8 Complement: (b(n)) = (1, 2, 3, 6, 7, 9, 11, 12, 13, 15, 16, 17, 19, ... )
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 4; a[1] = 5; b[0] = 1; a[n_] := a[n] = 2 a[n - 2] - b[n - 1] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295068 *) Table[b[n], {n, 0, 10}]
Comments