A295069 Solution of the complementary equation a(n) = 2*a(n-2) - b(n-2) + n, where a(0) = 3, a(1) = 4, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 7, 9, 13, 17, 24, 31, 45, 59, 86, 114, 168, 223, 331, 441, 657, 877, 1309, 1748, 2612, 3490, 5218, 6974, 10430, 13941, 20853, 27875, 41699, 55743, 83391, 111479, 166775, 222951, 333543, 445895, 667079, 891783, 1334150, 1783558, 2668292, 3567108
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1 a(2) = 2*a(0) - b(0) + 2 = 7 Complement: (b(n)) = (1, 2, 5, 6, 8, 10, 11, 12, 14, 15, 16, 18, ... )
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 3; a[1] = 4; b[0] = 1; a[n_] := a[n] = 2 a[n - 2] + b[n - 1] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295069 *) Table[b[n], {n, 0, 10}]
Comments