A295070 Solution of the complementary equation a(n) = a(n-2) + b(n-1) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 11, 19, 24, 35, 43, 57, 68, 84, 97, 115, 130, 150, 168, 191, 211, 236, 259, 287, 312, 342, 369, 401, 430, 464, 495, 531, 565, 604, 640, 681, 719, 762, 802, 848, 891, 939, 984, 1034, 1081, 1133, 1182, 1236, 1287, 1343, 1396, 1454, 1510, 1571, 1629
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3 a(2) = a(0) + b(1) + b(0) = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, ... )
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Crossrefs
Cf. A295053.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = 2 a[n - 2] + b[n - 1] + b[ n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295070 *) Table[b[n], {n, 0, 10}]
Comments