cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295074 Numerator of the coefficient of the n-th term of the power expansion near x = 0 of sqrt(1+1/sqrt(1-x))/sqrt(2).

This page as a plain text file.
%I A295074 #53 Oct 11 2018 17:19:01
%S A295074 1,11,69,1843,12767,181215,1308365,76546627,565400891,8419185989,
%T A295074 63092292851,1901486819127,14392588079947,218735248662407,
%U A295074 1667806937019357,204072937168787299,1564753338846234067,24051971232321138025,185239367598020901335,5717329190017842492029
%N A295074 Numerator of the coefficient of the n-th term of the power expansion near x = 0 of sqrt(1+1/sqrt(1-x))/sqrt(2).
%H A295074 G. C. Greubel, <a href="/A295074/b295074.txt">Table of n, a(n) for n = 1..500</a>
%p A295074 seq(numer(coeff(series(sqrt(1+1/sqrt(1-x))/sqrt(2), x,25),x,n)),n=1..20); # _Muniru A Asiru_, May 30 2018
%t A295074 Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + 1/Sqrt[1 - x]]/Sqrt[2]), {x, 0, n}], n]], {n, 1, 20}]
%Y A295074 Cf. A061548 (similar coefficients but for a different function).
%K A295074 nonn,frac
%O A295074 1,2
%A A295074 _Karol A. Penson_, Apr 16 2018