This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295076 #27 Sep 08 2022 08:46:20 %S A295076 6,10,12,14,20,22,24,26,28,30,34,38,40,42,44,46,48,52,54,56,58,60,62, %T A295076 66,68,70,74,76,78,80,82,84,86,88,90,92,94,96,102,104,106,108,110,112, %U A295076 114,116,118,120,122,124,126,130,132,134,136,138,140,142,146,148 %N A295076 Numbers n > 1 such that n and sigma(n) have the same smallest prime factor. %C A295076 Supersequence of A088829; this sequence contains also odd numbers: 441, 1521, 3249, 3969, 8649, 11025, ... %C A295076 Even terms of A000396 (perfect numbers) are a subsequence. %C A295076 Subsequence of A295078. %C A295076 Numbers n such that A020639(n) = A020639(sigma(n)). %C A295076 Numbers n such that A020639(n) = A071189(n). %e A295076 30 = 2*3*5 and sigma(30) = 72 = 2^3*3^2 hence 30 is in the sequence. %p A295076 select(t -> min(numtheory:-factorset(t))=min(numtheory:-factorset(numtheory:-sigma(t))), [$2..1000]); # _Robert Israel_, Nov 14 2017 %t A295076 Rest@ Select[Range@ 150, SameQ @@ Map[FactorInteger[#][[1, 1]] &, {#, DivisorSigma[1, #]}] &] (* _Michael De Vlieger_, Nov 13 2017 *) %o A295076 (Magma) [n: n in [2..1000000] | Minimum(PrimeDivisors(SumOfDivisors(n))) eq Minimum(PrimeDivisors(n))] %o A295076 (PARI) isok(n) = factor(n)[1,1] == factor(sigma(n))[1,1]; \\ _Michel Marcus_, Nov 14 2017 %Y A295076 Cf. A000203, A020639, A071189, A088829, A295078. %Y A295076 Cf. A071834 (numbers n such that n and sigma(n) have the same largest prime factor). %K A295076 nonn %O A295076 1,1 %A A295076 _Jaroslav Krizek_, Nov 13 2017 %E A295076 Added n>1 to definition - _N. J. A. Sloane_, Feb 03 2018