This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295084 #28 Oct 06 2024 09:16:20 %S A295084 1,1,1,3,3,3,3,4,7,7,7,8,8,8,8,9,9,10,10,10,10,10,10,11,16,16,17,17, %T A295084 17,18,18,19,19,19,19,20,20,20,20,21,21,21,21,21,22,22,22,23,30,31,31, %U A295084 31,31,32,32,33,33,33,33,34,34,34,35,36,36,36,36,36,36,37,37,38,38,38,39,39,39,39,39,40 %N A295084 Number of sqrt(n)-smooth numbers <= n. %C A295084 a(n) = number of positive integers m<=n such that A006530(m) <= sqrt(n). %H A295084 Wikipedia, <a href="https://en.wikipedia.org/wiki/Smooth_number">Smooth number</a> %F A295084 a(n) = n - A241419(n). %F A295084 If n is in A063539, then a(n)=a(n-1)+1; if n is in A001248, i.e., n=p^2 for prime p, then a(n)=a(n-1)+p; otherwise a(n)=a(n-1). %F A295084 a(n) = (1 - log(2))*n + O(n/log(n)) as n -> infinity. - _Robert Israel_, Nov 14 2017 %p A295084 N:= 100: # to get a(1)..a(N) %p A295084 G:= [0,seq(max(numtheory:-factorset(n)),n=2..N)]: %p A295084 seq(nops(select(t -> t^2 <= n, G[1..n])),n=1..N); # _Robert Israel_, Nov 14 2017 %p A295084 a:=[]; %p A295084 for n from 1 to 100 do %p A295084 c:=0; %p A295084 for m from 1 to n do %p A295084 if A006530(m)^2 <= n then c:=c+1; fi; od: %p A295084 a:=[op(a),c]; %p A295084 od: %p A295084 a; # (Included because variants of it will apply to related sequences) - _N. J. A. Sloane_, Apr 10 2020 %o A295084 (PARI) A295084(n) = my(r=n); forprime(p=sqrtint(n)+1,n, r-=n\p); r; %o A295084 (Python) %o A295084 from math import isqrt %o A295084 from sympy import primerange %o A295084 def A295084(n): return int(n-sum(n//p for p in primerange(isqrt(n)+1,n+1))) # _Chai Wah Wu_, Oct 06 2024 %Y A295084 Cf. A048098 (indices of records), A063539, A241419. %Y A295084 The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536. %K A295084 nonn,look %O A295084 1,4 %A A295084 _Max Alekseyev_, Nov 13 2017