This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295086 #29 Nov 15 2017 09:09:02 %S A295086 1,-1,-4,-8,1,24,78,111,75,-249,-876,-1847,-2251,-871,5170,17052, %T A295086 34742,47176,34576,-44016,-224561,-530104,-875149,-1030871,-475480, %U A295086 1488315,5658668,12109163,19411024,22693048,12926630,-24000623,-102605376,-230257606,-386964449 %N A295086 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(3*k-1)/2). %C A295086 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(3*n-1)/2, g(n) = -1. %H A295086 Seiichi Manyama, <a href="/A295086/b295086.txt">Table of n, a(n) for n = 0..10000</a> %F A295086 Convolution inverse of A294102. %F A295086 G.f.: Product_{k>=1} 1/(1 + x^k)^A000326(k). %F A295086 a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(3*d-1)*(-1)^(n/d). %o A295086 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(3*k-1)/2))) %Y A295086 Cf. A294846 (b=3), A284896 (b=4), this sequence (b=5), A295121 (b=6), A295122 (b=7), A295123 (b=8). %K A295086 sign %O A295086 0,3 %A A295086 _Seiichi Manyama_, Nov 15 2017