This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295087 #26 May 19 2023 07:01:49 %S A295087 0,1,2,3,4,5,7,8,6,9,11,10,13,12,14,15,18,17,19,21,16,23,22,26,29,25, %T A295087 24,27,30,34,31,20,28,33,37,32,35,41,40,47,43,44,36,39,49,46,50,55,45, %U A295087 38,52,51,60,53,57,48,42,56,67,63,69,76,65,61,68,58,71,64 %N A295087 Distinct values in A002487 in the order of appearance. %C A295087 This sequence is a permutation of the nonnegative integers, with inverse A295088. %H A295087 Rémy Sigrist, <a href="/A295087/b295087.txt">Table of n, a(n) for n = 1..10000</a> %H A295087 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %H A295087 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %F A295087 a(n) = A002487(A091945(n)). %e A295087 The first terms of this sequence, alongside the first terms of A002487, are: %e A295087 n a(n) fusc(k) k %e A295087 -- ---- ------- -- %e A295087 1 0 0 0 %e A295087 2 1 1 1 %e A295087 . . 1 2 %e A295087 3 2 2 3 %e A295087 . . 1 4 %e A295087 4 3 3 5 %e A295087 . . 2 6 %e A295087 . . 3 7 %e A295087 . . 1 8 %e A295087 5 4 4 9 %e A295087 . . 3 10 %e A295087 6 5 5 11 %e A295087 . . 2 12 %e A295087 . . 5 13 %e A295087 . . 3 14 %e A295087 . . 4 15 %e A295087 . . 1 16 %e A295087 . . 5 17 %e A295087 . . 4 18 %e A295087 7 7 7 19 %e A295087 . . 3 20 %e A295087 8 8 8 21 %e A295087 . . 5 22 %e A295087 . . 7 23 %o A295087 (PARI) fusc(n)=local(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b \\ after _Charles R Greathouse IV_ at A002487 %o A295087 s=0; for (n=0, 621, v=fusc(n); if(!bittest(s,v), print1(v", "); s+=2^v)) %o A295087 (Python) %o A295087 from functools import reduce %o A295087 from itertools import count, islice %o A295087 def A295087_gen(): # generator of terms %o A295087 s = {0} %o A295087 yield 0 %o A295087 for n in count(1): %o A295087 if (m:=sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0)))) not in s: %o A295087 yield m %o A295087 s.add(m) %o A295087 A295087_list = list(islice(A295087_gen(),20)) # _Chai Wah Wu_, May 18 2023 %Y A295087 Cf. A002487, A091945, A295088. %K A295087 nonn %O A295087 1,3 %A A295087 _Rémy Sigrist_, Nov 14 2017 %E A295087 Formula adapted after change in A091945 by _Rémy Sigrist_, Dec 07 2022