cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295098 a(n) = n! * [x^n] exp(n*x)*(1 + exp(x^2/2)*x*(1 + sqrt(Pi/2)*erf(x/sqrt(2)))).

This page as a plain text file.
%I A295098 #10 Aug 21 2018 03:17:58
%S A295098 1,2,10,75,760,9715,150060,2719017,56556480,1328337117,34773226340,
%T A295098 1003998156293,31696623421488,1086258754644505,40161805428662876,
%U A295098 1593475984997421525,67534151717002711296,3044989873158805787409,145537456143562934305860,7350253384336351186239341,391132792671917087054081200
%N A295098 a(n) = n! * [x^n] exp(n*x)*(1 + exp(x^2/2)*x*(1 + sqrt(Pi/2)*erf(x/sqrt(2)))).
%C A295098 The n-th term of the n-th binomial transform of A006882.
%H A295098 G. C. Greubel, <a href="/A295098/b295098.txt">Table of n, a(n) for n = 0..250</a>
%H A295098 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A295098 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%F A295098 a(n) ~ c * n^n, where c = 1 + exp(1/2) * (1 + sqrt(Pi/2) * erf(1/sqrt(2))) = 4.0594074053425761445394754992332... - _Vaclav Kotesovec_, Aug 21 2018
%t A295098 Table[n! SeriesCoefficient[Exp[n x] (1 + Exp[x^2/2] x (1 + Sqrt[Pi/2] Erf[x/Sqrt[2]])), {x, 0, n}], {n, 0, 20}]
%Y A295098 Cf. A006882, A063170, A263529, A295099, A295100.
%K A295098 nonn
%O A295098 0,2
%A A295098 _Ilya Gutkovskiy_, Nov 14 2017