This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295106 #10 Feb 16 2025 08:33:51 %S A295106 1,1,3,14,96,849,8642,102941,1373936,20607888,340516992,6173590906, %T A295106 121502258688,2583247609500,58940269686776,1437019737587004, %U A295106 37267502536335744,1024420897710717344,29745405670928179392,909702365350759274304,29224500667382460549504 %N A295106 a(n) = (1/n) times the n-th derivative of the sixth tetration of x (power tower of order 6) x^^6 at x=1. %H A295106 Alois P. Heinz, <a href="/A295106/b295106.txt">Table of n, a(n) for n = 1..423</a> %H A295106 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a> %H A295106 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a> %H A295106 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a> %F A295106 a(n) = 1/n * [(d/dx)^n x^^6]_{x=1}. %F A295106 a(n) = (n-1)! * [x^n] (x+1)^^6. %F A295106 a(n) = 1/n * A211205(n). %p A295106 f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end: %p A295106 a:= n-> (n-1)!*coeff(series(f(6), x, n+1), x, n): %p A295106 seq(a(n), n=1..23); %t A295106 f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]]; %t A295106 a[n_] := (n - 1)!*SeriesCoefficient[f[6], {x, 0, n}]; %t A295106 Array[a, 23] (* _Jean-François Alcover_, May 31 2018, from Maple *) %Y A295106 Column k=6 of A295028. %Y A295106 Cf. A211205. %K A295106 nonn %O A295106 1,3 %A A295106 _Alois P. Heinz_, Nov 14 2017