This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295110 #10 Feb 16 2025 08:33:51 %S A295110 1,1,3,14,96,849,9362,123101,1888016,33066768,648254352,14047013386, %T A295110 332435753328,8525497523100,235255431749816,6948357529667124, %U A295110 218632693287458304,7300788870920480864,257844842264845841472,9602530635731056455744,376083658114082740084224 %N A295110 a(n) = (1/n) times the n-th derivative of the tenth tetration of x (power tower of order 10) x^^10 at x=1. %H A295110 Alois P. Heinz, <a href="/A295110/b295110.txt">Table of n, a(n) for n = 1..407</a> %H A295110 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a> %H A295110 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a> %H A295110 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a> %F A295110 a(n) = 1/n * [(d/dx)^n x^^10]_{x=1}. %F A295110 a(n) = (n-1)! * [x^n] (x+1)^^10. %F A295110 a(n) = 1/n * A277541(n). %p A295110 f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end: %p A295110 a:= n-> (n-1)!*coeff(series(f(10), x, n+1), x, n): %p A295110 seq(a(n), n=1..23); %t A295110 f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]]; %t A295110 a[n_] := (n - 1)!*SeriesCoefficient[f[10], {x, 0, n}]; %t A295110 Array[a, 23] (* _Jean-François Alcover_, May 31 2018, from Maple *) %Y A295110 Column k=10 of A295028. %Y A295110 Cf. A277541. %K A295110 nonn %O A295110 1,3 %A A295110 _Alois P. Heinz_, Nov 14 2017