cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A295112 a(n) = Sum_{k=0..n} binomial(n,2*k)*binomial(2*k,k)/(2*k-1).

Original entry on oeis.org

-1, -1, 1, 5, 13, 29, 63, 139, 317, 749, 1827, 4575, 11699, 30419, 80161, 213573, 574253, 1556077, 4244835, 11647151, 32122231, 88995879, 247573565, 691246369, 1936445619, 5441165699, 15331341373, 43308322049, 122624939677, 347957102909, 989335822559, 2818200111867
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 14 2017

Keywords

Comments

As binomial(2*k,k) = 2*(2*k-1)*A000108(k-1) for all k = 1,2,..., we see that a(n) is always an odd integer. Clearly, a(n) > 0 for all n > 1. a(n) can be viewed as an analog of Motzkin numbers, which should have some combinatorial interpretations.
Conjecture: The sequence a(n+1)/a(n) (n = 5,6,...) is strictly increasing with limit 3, and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 9,10,...) is strictly decreasing to the limit 1.
See also A295113 for a conjecture involving the current sequence.

Examples

			a(3) = 5 since binomial(3,2*0)*binomial(2*0,0)/(2*0-1) + binomial(3,2*1)*binomial(2*1,1)/(2*1-1) = -1 + 3*2 = 5.
		

Crossrefs

Programs

  • Maple
    a := n -> -hypergeom([-1/2, 1/2 - n/2, -n/2], [1/2, 1], 4):
    seq(simplify(a(n)), n=0..31); # Peter Luschny, Nov 15 2017
  • Mathematica
    W[n_]:=W[n]=Sum[Binomial[n,2k]Binomial[2k,k]/(2k-1),{k,0,n/2}]; Table[W[n],{n,0,35}]
    a[n_] := -AppellF1[-n, -1/2, -1/2, 1, 2, -2]; Table[a[n], {n,0,31}] (* Peter Luschny, Nov 15 2017 *)

Formula

Via the Zeilberger algorithm we have the recurrence: (n+3)*a(n+3) = (3n+7)*a(n+2) + (n-5)*a(n+1) - 3*(n+1)*a(n) for any nonnegative integer n.
a(n) = -hypergeom([-1/2, 1/2 - n/2, -n/2], [1/2, 1], 4). - Peter Luschny, Nov 15 2017
a(n) ~ 3^(n + 3/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 15 2017
From Mélika Tebni, Sep 03 2025: (Start)
G.f.: -sqrt((1 + x)*(1 - 3*x)) / (1 - x)^2.
a(n) = -Sum_{k=0..n} Sum_{j=0..k} A167022(j). (End)

A295132 a(n) = (2/n)*Sum_{k=1..n} (2k+1)*M(k)^2 where M(k) is the Motzkin number A001006(k).

Original entry on oeis.org

6, 23, 90, 432, 2286, 13176, 80418, 513764, 3400518, 23167311, 161640554, 1150633512, 8332048638, 61232315553, 455830692210, 3432015694314, 26101221114582, 200295455169015, 1549473966622602, 12074304397434552, 94713783502786686, 747454269790900728
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 15 2017

Keywords

Comments

Sun (2014) conjectures that for any prime p > 3 we have Sum_{k = 0..p-1} M(k)^2 == (2 - 6*p)(p/3) (mod p^2) and Sum_{k = 0..p - 1} k*M(k)^2 == (9*p - 1)(p/3) (mod p^2), where (p/3) is the Legendre symbol.
Sun (2018) proves that a(n) is always an integer.

Examples

			a(2) = 23 since (2/2)*Sum_{k=1..2} (2k + 1)*M(k)^2 = (2*1 + 1)*M(1)^2 + (2*2 + 1)*M(2)^2 = 3*1^2 + 5*2^2 = 23.
		

Crossrefs

Programs

  • Maple
    h := k -> (4*k+2)*hypergeom([(1-k)/2,-k/2],[2],4)^2:
    a := proc(n) add(simplify(h(k)),k=1..n): if % mod n = 0 then %/n else -1 fi end:
    seq(a(n), n=1..25); # Peter Luschny, Nov 16 2017
  • Mathematica
    M[n_] := M[n] = Sum[Binomial[n, 2k] Binomial[2k, k]/(k + 1), {k, 0, n/2}];
    a[n_] := a[n] = 2/n * Sum[(2k + 1) M[k]^2, {k, 1, n}];
    Table[a[n], {n, 1, 25}]

Formula

a(n) = 2*A005043(n+1)*((6+6/n)*A005043(n) + (2+1/n)*A005043(n+1)). - Mark van Hoeij, Nov 10 2022

A295371 a(n) = (1/(2n))*Sum_{k=0..n-1} C(n-1, k)*C(n+k, k)*C(2k, k)*(k+2)*(-3)^(n-1-k).

Original entry on oeis.org

1, 3, 19, 127, 921, 6921, 53523, 422199, 3382417, 27429043, 224636259, 1854761437, 15419579761, 128941830993, 1083686483259, 9147887134119, 77520233226537, 659167237928691, 5622149927918763, 48083938099637247
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 20 2017

Keywords

Comments

From Mark van Hoeij, Nov 10 2022: (Start)
The fact that a(n) is an integer follows from the formula for the generating function. It is not difficult to show that f(x) := (hypergeom([1/2, 1/2], [1], 16*x) - 1)/4 is an element of Z[[x]]. Substituting x -> x/(1 + 3*x)^2 then shows that the given g.f. is in Z[[x]] as well. The fact that this formula is indeed the g.f. follows from the recurrence.
One can also show that a(n) is odd, as follows. Reducing f(x) in Z[[x]] modulo 2 gives: x + x^2 + x^4 + x^8 + x^16 + ... Again substitute x -> x/(1 + 3*x)^2, which modulo 2 is: x + x^3 + x^5 + x^7 + ... Then use the fact that (a+b)^(2^i) is congruent to a^(2^i) + b^(2^i) modulo 2 to see that f(x/(1 + 3*x)^2) is congruent to x + x^2 + x^3 + x^4 + ... modulo 2, so every a(n) is congruent to 1 modulo 2.
The formula a(n) = (A002426(n)^2 + 3*A002426(n-1)^2)/4 gives a second proof that a(n) is an odd integer. The numbers A002426(n) are odd, and so their squares are congruent to 1 modulo 8. Hence A002426(n)^2 + 3*A002426(n-1)^2 is congruent to 1 + 3 * 1 modulo 8. Since a(n) is that number divided by 4, it follows that a(n) is an odd integer. (End)

Examples

			a(3) = 19 since (1/6)*Sum_{k=0,1,2} binomial(2,k)*binomial(3+k,k)*binomial(2k,k)*(k+2)*(-3)^(2-k) = (2*(-3)^2 + 2*4*2*3*(-3) + 10*6*4)/6 = 19.
		

Crossrefs

Programs

  • Maple
    ogf := EllipticK((4*sqrt(x))/(3*x + 1))/(2*Pi) - (1/4); ser := series(ogf, x, 22): seq(coeff(ser, x, n), n = 1..20); # Peter Luschny, Nov 10 2022
  • Mathematica
    f[n_,k_]:=f[n,k]=Binomial[n-1,k]Binomial[n+k,k]Binomial[2k,k](k+2)(-3)^(n-1-k);
    s[n_]:=a[n]=Sum[f[n,k],{k,0,n-1}]/(2n);
    Table[s[n],{n,1,20}]

Formula

Via the Zeilberger algorithm we find that the sequence the following recurrence: (2n + 1)*(n + 3)^2*a(n + 3) = (2n + 1)*(7n^2 + 38n + 52)*a(n + 2) + 3*(2n + 5)*(7n^2 + 4n + 1)*a(n + 1) - 27*(2n + 5)*n^2*a(n).
From Mark van Hoeij, Nov 10 2022: (Start)
G.f.: (hypergeom([1/2, 1/2], [1], 16*x/(1 + 3*x)^2) - 1)/4.
a(n) = (A002426(n)^2 + 3 * A002426(n-1)^2)/4. (End)
G.f.: EllipticK((4*sqrt(x))/(3*x + 1))/(2*Pi) - (1/4). - Peter Luschny, Nov 10 2022

Extensions

Name simplified based on the proof of Mark van Hoeij by Peter Luschny, Nov 10 2022
Showing 1-3 of 3 results.