This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295122 #12 Nov 15 2017 09:40:44 %S A295122 1,-1,-6,-12,6,65,179,202,-137,-1392,-3492,-5135,-1325,15437,52934, %T A295122 101787,116827,-16945,-462603,-1350732,-2475989,-2889620,-343236, %U A295122 8559858,26972213,53099230,72521956,47535918,-86985043,-409729146,-952305325,-1577038736 %N A295122 Expansion of Product_{k>=1} 1/(1 + x^k)^(k*(5*k-3)/2). %C A295122 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n*(5*n-3)/2, g(n) = -1. %H A295122 Seiichi Manyama, <a href="/A295122/b295122.txt">Table of n, a(n) for n = 0..10000</a> %F A295122 Convolution inverse of A294837. %F A295122 G.f.: Product_{k>=1} 1/(1 + x^k)^A000566(k). %F A295122 a(0) = 1 and a(n) = (1/(2*n)) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(5*d-3)*(-1)^(n/d). %o A295122 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+x^k)^(k*(5*k-3)/2))) %Y A295122 Cf. A294846 (b=3), A284896 (b=4), A295086 (b=5), A295121 (b=6), this sequence (b=7), A295123 (b=8). %K A295122 sign %O A295122 0,3 %A A295122 _Seiichi Manyama_, Nov 15 2017