cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295130 a(n) = 3*n*(64*n^2 + 1).

Original entry on oeis.org

195, 1542, 5193, 12300, 24015, 41490, 65877, 98328, 139995, 192030, 255585, 331812, 421863, 526890, 648045, 786480, 943347, 1119798, 1316985, 1536060, 1778175, 2044482, 2336133, 2654280, 3000075, 3374670, 3779217, 4214868, 4682775, 5184090, 5719965, 6291552, 6900003, 7546470, 8232105, 8958060, 9725487
Offset: 1

Views

Author

Michael H. Bischoff, Nov 15 2017

Keywords

Examples

			For examples see "Squares in a square" in the LINKS section.
		

References

  • Martin Gardner, Mathematical Carnival, 1975, Alfred A. Knopf Inc., New York.

Crossrefs

Programs

  • Mathematica
    f[n_] := 3n (64n^2 +1); Array[f, 33] (* or *)
    CoefficientList[ Series[(3 (65 +254x +65x^2))/(-1 +x)^4, {x, 0, 33}], x] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {195, 1542, 5193, 12300}, 34] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    Vec(3*x*(65 + 254*x + 65*x^2) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Nov 23 2017
    
  • PARI
    a(n) = 192*n^3 + 3*n \\ Iain Fox, Dec 22 2017

Formula

a(n) = 3*n*(64*n^2 + 1).
From Colin Barker, Nov 23 2017: (Start)
G.f.: 3*x*(65 + 254*x + 65*x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A008585(n) * A158686(n). - Omar E. Pol, Nov 24 2017
E.g.f.: 3*x*e^x * (65 + 192*x + 64*x^2). - Iain Fox, Dec 22 2017