A295132 a(n) = (2/n)*Sum_{k=1..n} (2k+1)*M(k)^2 where M(k) is the Motzkin number A001006(k).
6, 23, 90, 432, 2286, 13176, 80418, 513764, 3400518, 23167311, 161640554, 1150633512, 8332048638, 61232315553, 455830692210, 3432015694314, 26101221114582, 200295455169015, 1549473966622602, 12074304397434552, 94713783502786686, 747454269790900728
Offset: 1
Keywords
Examples
a(2) = 23 since (2/2)*Sum_{k=1..2} (2k + 1)*M(k)^2 = (2*1 + 1)*M(1)^2 + (2*2 + 1)*M(2)^2 = 3*1^2 + 5*2^2 = 23.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57(2014), no.7, 1375-1400.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schroder numbers, J. Number Theory 183(2018), 146-171.
- Zhi-Wei Sun, On Motzkin numbers and central trinomial coefficients, arXiv:1801.08905 [math.CO], 2018.
Programs
-
Maple
h := k -> (4*k+2)*hypergeom([(1-k)/2,-k/2],[2],4)^2: a := proc(n) add(simplify(h(k)),k=1..n): if % mod n = 0 then %/n else -1 fi end: seq(a(n), n=1..25); # Peter Luschny, Nov 16 2017
-
Mathematica
M[n_] := M[n] = Sum[Binomial[n, 2k] Binomial[2k, k]/(k + 1), {k, 0, n/2}]; a[n_] := a[n] = 2/n * Sum[(2k + 1) M[k]^2, {k, 1, n}]; Table[a[n], {n, 1, 25}]
Comments