This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295137 #4 Nov 19 2017 19:04:49 %S A295137 1,2,8,26,80,242,729,2190,6573,19722,59169,177510,532533,1597602, %T A295137 4792809,14378430,43135293,129405882 %N A295137 Solution of the complementary equation a(n) = 3*a(n-1) + b(n-1) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295137 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences. %H A295137 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A295137 a(0) = 1, a(1) = 2, b(0) = 3 %e A295137 a(2) =3*a(1) + b(1) - n = 8 %e A295137 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ... ) %t A295137 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A295137 a[0] = 1; a[1] = 2; b[0] = 3; %t A295137 a[n_] := a[n] = 3 a[n - 1] + b[n - 1] - n; %t A295137 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A295137 Table[a[n], {n, 0, 18}] (* A295137 *) %t A295137 Table[b[n], {n, 0, 10}] %Y A295137 Cf. A295053. %K A295137 nonn,easy %O A295137 0,2 %A A295137 _Clark Kimberling_, Nov 19 2017