This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295139 #4 Nov 19 2017 19:05:13 %S A295139 1,2,6,10,23,37,77,120,242,372,739,1130,2232,3406,6713,10236,20158, %T A295139 30728,60495,92206,181509,276643,544553,829956,1633687,2489897, %U A295139 4901091,7469722,14703305,22409199,44109949,67227632,132329883 %N A295139 Solution of the complementary equation a(n) = 3*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295139 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences. %C A295139 The sequence a(n+1)/a(n) appears to have two convergent subsequences, with limits 1.52..., 1.96... %H A295139 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A295139 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %e A295139 a(2) =3*a(0) + b(0) = 6 %e A295139 Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, ...) %t A295139 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A295139 a[0] = 1; a[1] = 2; b[0] = 3; b[1]=4; %t A295139 a[n_] := a[n] = 3 a[n - 2] + b[n - 2]; %t A295139 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A295139 Table[a[n], {n, 0, 18}] (* A295139 *) %t A295139 Table[b[n], {n, 0, 10}] %Y A295139 Cf. A295053. %K A295139 nonn,easy %O A295139 0,2 %A A295139 _Clark Kimberling_, Nov 19 2017