A295142 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 9, 25, 64, 159, 389, 945, 2289, 5534, 13369, 32285, 77953, 188206, 454381, 1096985, 2648369, 6393742, 15435873, 37265509, 89966913, 217199358, 524365653, 1265930690
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) =2*a(1) + a(0) + b(0) = 9 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295142 *) Table[b[n], {n, 0, 10}]
Formula
a(n+1)/a(n) -> 1 + sqrt(2).
Comments