A295143 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 9, 25, 65, 162, 397, 966, 2340, 5658, 13669, 33010, 79704, 192434, 464589, 1121630, 2707868, 6537386, 15782661, 38102730, 91988144, 222079042
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 a(2) =2*a(1) + a(0) + b(1) = 9 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295143 *) Table[b[n], {n, 0, 10}]
Formula
a(n+1)/a(n) -> 1 + sqrt(2).
Comments