A295147 Solution of the complementary equation a(n) = a(n-1) + 2*a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 17, 39, 80, 167, 337, 682, 1368, 2745, 5495, 11000, 22006, 44024, 88055, 176123, 352254, 704522, 1409053, 2818121, 5636252, 11272520, 22545051, 45090119, 90180250, 180360518
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 a(2) = a(1) + 2*a(0) + b(1) = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; a[n_] := a[n] = a[ n - 1] + 2 a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295147 *) Table[b[n], {n, 0, 10}]
Formula
a(n+1)/a(n) -> 2.
Comments