This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295159 #14 Apr 29 2021 00:54:56 %S A295159 0,4,13,20,29,37,50,52,61,74,77,85,91,101,106,118,125,131,133,139,162, %T A295159 157,154,166,178,194,187,205,203,202,227,211,226,235,234,269,251,275, %U A295159 250,266,291,274,259,283,301,325,306,298,326,334,347,322,362,447,331 %N A295159 Smallest number with exactly n representations as a sum of five nonnegative squares. %C A295159 Conjecture: a(448) does not exist, i.e., there is no number with exactly 448 such representations. - _Robert Israel_, Nov 15 2017 %D A295159 E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1. %H A295159 Robert Israel, <a href="/A295159/b295159.txt">Table of n, a(n) for n = 1..447</a> (first 200 terms from Robert Price) %H A295159 D. H. Lehmer, <a href="http://www.jstor.org/stable/2305380">On the Partition of Numbers into Squares</a>, The American Mathematical Monthly, Vol. 55, No. 8, October 1948, pp. 476-481. %F A295159 A000174(a(n))=n. - _Robert Israel_, Nov 15 2017 %p A295159 N:= 1000: # to get a(1)...a(n) where a(n+1) is the first term > N %p A295159 V:= Array(0..N): %p A295159 for x[1] from 0 to floor(sqrt(N/5)) do %p A295159 for x[2] from x[1] while x[1]^2 + 4*x[2]^2 <= N do %p A295159 for x[3] from x[2] while x[1]^2 + x[2]^2 + 3*x[3]^2 <= N do %p A295159 for x[4] from x[3] while x[1]^2 + x[2]^2 + x[3]^2 + 2*x[4]^2 <= N do %p A295159 for x[5] from x[4] while x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2 <= N do %p A295159 t:= x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2 + x[5]^2; %p A295159 V[t]:= V[t]+1; %p A295159 od od od od od: %p A295159 A:= Vector(max(V),-1): %p A295159 for i from 0 to N do if A[V[i]]=-1 then A[V[i]]:= i fi od: %p A295159 T:= select(t -> A[t]=-1, [$1..max(V)]): %p A295159 if T = [] then nmax:= max(V) else nmax:= T[1]-1 fi: %p A295159 convert(A[1..nmax],list); # _Robert Israel_, Nov 15 2017 %Y A295159 Cf. A000174, A006431, A294675. %K A295159 nonn %O A295159 1,2 %A A295159 _Robert Price_, Nov 15 2017