cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295183 a(n) = n! * [x^n] exp(n*x)/(1 - x)^n.

This page as a plain text file.
%I A295183 #12 Feb 16 2025 08:33:52
%S A295183 1,2,18,276,5960,165870,5648832,227507336,10577029248,557457222330,
%T A295183 32843470246400,2139014862736092,152592485390272512,
%U A295183 11833139429253625574,991101777088623943680,89164680959505831930000,8575295241502192869343232,877955050581430468997781234,95337079570413427211596726272
%N A295183 a(n) = n! * [x^n] exp(n*x)/(1 - x)^n.
%C A295183 The n-th term of the n-fold exponential convolution of A000522 with themselves.
%H A295183 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A295183 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>
%H A295183 Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>
%H A295183 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>
%H A295183 <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>
%F A295183 a(n) ~ phi^(3*n + 1/2) * n^n / (5^(1/4) * exp(n/phi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Nov 16 2017
%F A295183 a(n) = (-1)^n*n!*Laguerre(n,-2*n,n). - _Ilya Gutkovskiy_, May 24 2018
%t A295183 Table[n! SeriesCoefficient[Exp[n x]/(1 - x)^n, {x, 0, n}], {n, 0, 18}]
%Y A295183 Cf. A000407, A000522, A001813, A081923, A295182, A295188.
%K A295183 nonn
%O A295183 0,2
%A A295183 _Ilya Gutkovskiy_, Nov 16 2017