This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295188 #7 Nov 21 2024 09:30:32 %S A295188 6,2,0,6,5,2,7,0,3,8,3,9,7,1,6,3,7,3,1,0,0,0,7,4,0,5,3,2,1,8,6,5,8,0, %T A295188 5,8,5,2,7,8,0,5,2,8,7,0,8,4,7,9,6,2,0,2,2,9,2,6,0,7,5,3,9,6,8,7,9,0, %U A295188 5,8,4,9,3,7,5,6,1,4,1,8,4,4,4,3,5,6,3,1,1,2,2,6,1,0,2,3,0,5,0,6,3,7,0,2,4 %N A295188 Decimal expansion of phi^3 * exp(1 - 1/phi), where phi is the golden ratio. %H A295188 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A295188 Equals ((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))). %F A295188 Equals limit n->infinity (A066399(n)/n!)^(1/n). %F A295188 Equals limit n->infinity (A239761(n)/n!)^(1/n). %F A295188 Equals limit n->infinity (A295183(n)/n!)^(1/n). %e A295188 6.206527038397163731000740532186580585278052870847962022926... %p A295188 evalf(((1+sqrt(5))/2)^3 * exp(1 - 2/(1+sqrt(5))), 120); %t A295188 RealDigits[GoldenRatio^3 * Exp[1 - 1/GoldenRatio], 10, 110][[1]] %o A295188 (PARI) phi=(sqrt(5)+1)/2; phi^3*exp(2-phi) \\ _Charles R Greathouse IV_, Nov 21 2024 %Y A295188 Cf. A001622, A066399, A239761, A295183. %K A295188 nonn,cons %O A295188 1,1 %A A295188 _Vaclav Kotesovec_, Nov 16 2017