A295218 Number of partitions of 2*n-1 into four squares.
1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 4, 2, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 2, 5, 5, 4, 3, 6, 4, 5, 4, 5, 5, 5, 3, 6, 6, 5, 5, 6, 4, 5, 5, 5, 6, 8, 4, 6, 6, 7, 5, 7, 5, 7, 7, 6, 6, 6, 5, 8, 8, 6, 5, 10, 6, 8, 6, 7, 7, 8, 5, 8, 10, 7, 8, 8, 6, 8, 7, 9, 9, 11, 5, 8, 10, 7, 7
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Jacobi four square theorem
Programs
-
Maple
N:= 100: # to get a(1)...a(N) V:= Array(0..2*N-1): for a from 0 while 4*a^2 <= 2*N-1 do for b from a while a^2 + 3*b^2 <= 2*N-1 do for c from b while a^2 + b^2 + 2*c^2 <= 2*N-1 do for d from c while a^2 + b^2 + c^2 + d^2 <= 2*N-1 do t:= a^2 + b^2 + c^2 + d^2; V[t]:= V[t]+1 od od od od: seq(V[2*i-1],i=1..N); # Robert Israel, Nov 21 2017
Comments