This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295229 #23 Nov 30 2023 12:26:17 %S A295229 1,6,84,8548,4203520,8590557312,70368815480832,2305843028004192256, %T A295229 302231454912728264605696,158456325028538104598816096256, %U A295229 332306998946228986960926214931349504,2787593149816327892769293535238052808491008 %N A295229 Number of tilings of the n X n grid, using diagonal lines to connect the grid points. %C A295229 The grids are counted up to reflection and rotation. %C A295229 a(n) <= A295223(n). %H A295229 Peter Kagey, <a href="/A295229/b295229.txt">Table of n, a(n) for n = 1..57</a> %H A295229 Andrew Howroyd, <a href="/A295229/a295229.txt">Derivation of Formula</a> %H A295229 Peter Kagey, <a href="/A295229/a295229.pdf">Example of the 6 tilings of the 2 X 2 grid</a>. %H A295229 Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv:2311.13072 [math.CO], 2023. See p. 3. %F A295229 From _Andrew Howroyd_, Nov 19 2017: (Start) %F A295229 a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 3*2^(n^2/2) + 2*2^(n^2/4)) / 8 for n even. %F A295229 a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + 2^((n^2+1)/2)) / 8 for n odd. (End) %e A295229 For n = 2, the a(2) = 6 tilings are: %e A295229 //, \/, /\, \\, /\, and \/. %e A295229 // // // // \/ /\ %t A295229 Array[(2^(#^2) + 2*2^(# (# + 1)/2) + If[EvenQ@ #, 3*2^(#^2/2) + 2*2^(#^2/4), 2^((#^2 + 1)/2)])/8 &, 12] (* _Michael De Vlieger_, Apr 12 2018 *) %o A295229 (PARI) a(n) = (2^(n^2) + 2*2^(n*(n+1)/2) + if(n%2, 2^((n^2+1)/2), 3*2^(n^2/2) + 2*2^(n^2/4)))/8; \\ _Andrew Howroyd_, Nov 19 2017 %Y A295229 Cf. A054247, A295223. %K A295229 nonn %O A295229 1,2 %A A295229 _Peter Kagey_, Nov 18 2017 %E A295229 a(5)-a(12) from _Andrew Howroyd_, Nov 19 2017