cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295234 Expansion of Product_{k>=1} (1 - k*x^k)^(k^(k-1)).

This page as a plain text file.
%I A295234 #13 Nov 18 2017 12:17:53
%S A295234 1,-1,-4,-23,-225,-2765,-42291,-758931,-15672042,-365632740,
%T A295234 -9512462314,-273071185192,-8574979449941,-292421476560437,
%U A295234 -10762598186760785,-425244979326332068,-17953805056325313497,-806668085786772161511
%N A295234 Expansion of Product_{k>=1} (1 - k*x^k)^(k^(k-1)).
%C A295234 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n^(n-1), g(n) = n.
%H A295234 Seiichi Manyama, <a href="/A295234/b295234.txt">Table of n, a(n) for n = 0..386</a>
%F A295234 Convolution inverse of A294957.
%F A295234 a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294956(k)*a(n-k) for n > 0.
%o A295234 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k^(k-1)))
%Y A295234 Cf. A266964, A294956, A294957.
%K A295234 sign
%O A295234 0,3
%A A295234 _Seiichi Manyama_, Nov 18 2017