This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295235 #33 Jul 23 2019 00:43:34 %S A295235 0,1,2,3,4,5,6,7,8,9,10,12,14,15,16,17,18,20,21,24,28,30,31,32,33,34, %T A295235 36,40,42,48,56,60,62,63,64,65,66,68,72,73,80,84,85,96,112,120,124, %U A295235 126,127,128,129,130,132,136,144,146,160,168,170,192,224,240,248 %N A295235 Numbers k such that the positions of the ones in the binary representation of k are in arithmetic progression. %C A295235 Also numbers k of the form Sum_{b=0..h-1} 2^(i+j*b) for some h >= 0, i >= 0, j > 0 (in fact, h = A000120(k), and if k > 0, i = A007814(k)). %C A295235 There is a simple bijection between the finite sets of nonnegative integers in arithmetic progression and the terms of this sequence: s -> Sum_{i in s} 2^i; the term 0 corresponds to the empty set. %C A295235 For any n > 0, A054519(n) gives the numbers of terms with n+1 digits in binary representation. %C A295235 For any n >= 0, n is in the sequence iff 2*n is in the sequence. %C A295235 For any n > 0, A000695(a(n)) is in the sequence. %C A295235 The first prime numbers in the sequence are: 2, 3, 5, 7, 17, 31, 73, 127, 257, 8191, 65537, 131071, 262657, 524287, ... %C A295235 This sequence contains the following sequences: A000051, A000079, A000225, A000668, A002450, A019434, A023001, A048645. %C A295235 For any k > 0, 2^k - 2, 2^k - 1, 2^k, 2^k + 1 and 2^k + 2 are in the sequence (e.g., 14, 15, 16, 17, and 18). %C A295235 Every odd term is a binary palindrome (and thus belongs to A006995). %C A295235 Odd terms are A064896. - _Robert Israel_, Nov 20 2017 %H A295235 Rémy Sigrist, <a href="/A295235/b295235.txt">Table of n, a(n) for n = 1..1000</a> %e A295235 The binary representation of the number 42 is "101010" and has ones evenly spaced, hence 42 appears in the sequence. %e A295235 The first terms, alongside their binary representations, are: %e A295235 n a(n) a(n) in binary %e A295235 -- ---- -------------- %e A295235 1 0 0 %e A295235 2 1 1 %e A295235 3 2 10 %e A295235 4 3 11 %e A295235 5 4 100 %e A295235 6 5 101 %e A295235 7 6 110 %e A295235 8 7 111 %e A295235 9 8 1000 %e A295235 10 9 1001 %e A295235 11 10 1010 %e A295235 12 12 1100 %e A295235 13 14 1110 %e A295235 14 15 1111 %e A295235 15 16 10000 %e A295235 16 17 10001 %e A295235 17 18 10010 %e A295235 18 20 10100 %e A295235 19 21 10101 %e A295235 20 24 11000 %p A295235 f:= proc(d) local i,j,k; %p A295235 op(sort([seq(seq(add(2^(d-j*k),k=0..m),m=1..d/j),j=1..d),2^(d+1)])) %p A295235 end proc: %p A295235 0,1,seq(f(d),d=0..10); # _Robert Israel_, Nov 20 2017 %t A295235 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A295235 Select[Range[100],SameQ@@Differences[bpe[#]]&] (* _Gus Wiseman_, Jul 22 2019 *) %o A295235 (PARI) is(n) = my(h=hammingweight(n)); if(h<3, return(1), my(i=valuation(n,2),w=#binary(n)); if((w-i-1)%(h-1)==0, my(j=(w-i-1)/(h-1)); return(sum(k=0,h-1,2^(i+j*k))==n), return(0))) %Y A295235 Cf. A000051, A000079, A000120, A000225, A000668, A000695, A002450, A006995, A007814, A019434, A023001, A048645, A054519, A064896. %Y A295235 Cf. A029931, A048793 (binary indices triangle), A070939, A291166, A325328 (prime indices rather than binary indices), A326669, A326675. %K A295235 nonn,base %O A295235 1,3 %A A295235 _Rémy Sigrist_, Nov 18 2017