This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295238 #22 Oct 30 2024 10:27:33 %S A295238 1,1,6,57,796,14785,344046,9640225,316255416,11896233345,504918768250, %T A295238 23874754106401,1244712973780068,70940791877082049, %U A295238 4388291507415513894,292823509879910802465,20966854494419642792176,1603540841320336494905089,130464295561360336835272050 %N A295238 Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))). %C A295238 Inverse binomial transform of A194471. %H A295238 Seiichi Manyama, <a href="/A295238/b295238.txt">Table of n, a(n) for n = 0..356</a> %F A295238 E.g.f.: 1/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - ...))))), a continued fraction. %F A295238 a(n) ~ sqrt(2*(1 + LambertW(1/4))) * n^(n-1) / ((LambertW(1/4))^n * exp(n)). - _Vaclav Kotesovec_, Nov 18 2017 %F A295238 a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+1,k)/( (2*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A000108(k)/(n-k)!. - _Seiichi Manyama_, Aug 15 2023 %p A295238 a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # _Paolo P. Lava_, Mar 27 2019 %t A295238 nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]! %t A295238 nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! %t A295238 Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}] %o A295238 (PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ _Seiichi Manyama_, Aug 15 2023 %Y A295238 Cf. A000108, A006531, A052895, A194471, A213644, A295239. %K A295238 nonn %O A295238 0,3 %A A295238 _Ilya Gutkovskiy_, Nov 18 2017