cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295244 Expansion of Product_{k>=1} (1 + k^k*x^k)^k.

This page as a plain text file.
%I A295244 #13 Nov 19 2017 02:08:26
%S A295244 1,1,8,89,1121,17313,306588,6264356,144123978,3710660797,105517536463,
%T A295244 3289885612007,111534718552758,4086488012360688,160872398645645560,
%U A295244 6772203940050042913,303547711924399057195,14433006933542826499824
%N A295244 Expansion of Product_{k>=1} (1 + k^k*x^k)^k.
%C A295244 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = -n^n.
%H A295244 Seiichi Manyama, <a href="/A295244/b295244.txt">Table of n, a(n) for n = 0..385</a>
%F A295244 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^(2+n)*(-1)^(1+n/d).
%o A295244 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+k^k*x^k)^k))
%Y A295244 Cf. A266964, A294809, A295245.
%K A295244 nonn
%O A295244 0,3
%A A295244 _Seiichi Manyama_, Nov 18 2017