cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295245 Expansion of Product_{k>=1} 1/(1 + k^k*x^k)^k.

This page as a plain text file.
%I A295245 #14 Nov 19 2017 02:08:29
%S A295245 1,-1,-7,-74,-902,-14075,-253551,-5307194,-124832925,-3278747898,
%T A295245 -94780240390,-2995303153545,-102658540155454,-3794631664471440,
%U A295245 -150460754913170964,-6371573878247136298,-287006135162339175131,-13703650554585427586271
%N A295245 Expansion of Product_{k>=1} 1/(1 + k^k*x^k)^k.
%C A295245 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n^n.
%H A295245 Seiichi Manyama, <a href="/A295245/b295245.txt">Table of n, a(n) for n = 0..385</a>
%F A295245 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^(2+n)*(-1)^(n/d).
%o A295245 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k^k*x^k)^k))
%Y A295245 Cf. A266964, A294813, A295244.
%K A295245 sign
%O A295245 0,3
%A A295245 _Seiichi Manyama_, Nov 18 2017