This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295268 #11 Nov 20 2017 03:24:39 %S A295268 1,1,2,15,104,1445,18144,364651,6761600,176898249,4376614400, %T A295268 140703601511,4370369292288,166520945009965,6235421191430144, %U A295268 274675339364551875,12046634866183798784,602474837696641959569,30289753591657339944960,1696072847731424941183039 %N A295268 Expansion of e.g.f. 2/(1 + sqrt(1 - 4*LambertW(x))). %H A295268 Robert Israel, <a href="/A295268/b295268.txt">Table of n, a(n) for n = 0..379</a> %F A295268 E.g.f.: 1/(1 - LambertW(x)/(1 - LambertW(x)/(1 - LambertW(x)/(1 - LambertW(x)/(1 - ...))))), a continued fraction. %F A295268 a(n) ~ 2^(2*n + 3/2) * n^(n-1) / (sqrt(5) * exp(5*n/4)). - _Vaclav Kotesovec_, Nov 19 2017 %p A295268 S:= series(2/(1 + sqrt(1 - 4*LambertW(x))), x, 31): %p A295268 seq(coeff(S,x,n)*n!,n=0..30); # _Robert Israel_, Nov 20 2017 %t A295268 nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 - 4 LambertW[x]]), {x, 0, nmax}], x] Range[0, nmax]! %t A295268 nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[-LambertW[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! %o A295268 (PARI) x = 'x + O('x^30); Vec(serlaplace(2/(1 + sqrt(1 - 4*lambertw(x))))) \\ _Michel Marcus_, Nov 20 2017 %Y A295268 Cf. A000108, A180680, A277184, A295267. %K A295268 nonn %O A295268 0,3 %A A295268 _Ilya Gutkovskiy_, Nov 19 2017