cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A282990 Number of nX2 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

4, 11, 33, 98, 291, 865, 2570, 7637, 22693, 67432, 200373, 595405, 1769236, 5257255, 15621845, 46420050, 137936399, 409875693, 1217938738, 3619084505, 10754048825, 31955475472, 94955158681, 282157659273, 838426745764, 2491370993875
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 2 of A282996, A295275.

Examples

			Some solutions for n=5
..0..0. .1..1. .1..0. .0..0. .1..1. .1..0. .0..1. .1..0. .1..0. .0..0
..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1
..1..0. .0..0. .0..1. .0..0. .0..0. .0..1. .0..0. .0..0. .0..0. .0..0
..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .0..0. .0..0. .0..1. .0..0
..0..0. .0..0. .0..0. .1..0. .1..1. .0..1. .0..0. .1..1. .1..0. .1..1
		

Crossrefs

Formula

Empirical: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4).
Empirical: G.f.: -x*(-4-3*x+x^2+x^3)/(1-2*x-3*x^2+x^4) . - R. J. Mathar, Mar 02 2017

A295269 Number of n X n 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1's.

Original entry on oeis.org

2, 11, 164, 6659, 748740, 230659662, 196091375073, 458510348625561, 2951683183977839155, 52303382279027148884728, 2551191530898428081696382880, 342537007989863347885673784022387
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Diagonal of A295275.

Examples

			Some solutions for n=4
..0..0..0..1....0..0..1..1....0..1..0..1....1..0..1..0....0..0..0..1
..0..0..1..0....1..0..0..0....0..0..1..0....0..1..0..1....0..0..0..0
..0..1..0..1....0..0..1..0....0..0..0..0....1..1..1..0....0..0..0..0
..0..1..0..0....0..1..0..1....1..0..1..1....0..1..0..1....0..0..1..0
		

Crossrefs

Cf. A295275.

A295270 Number of n X 3 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1s.

Original entry on oeis.org

7, 33, 164, 811, 4035, 19997, 99245, 492401, 2443097, 12121712, 60143345, 298407987, 1480586061, 7346099129, 36448521869, 180843564461, 897276298340, 4451940313371, 22088817679653, 109596228179271, 543774384192739
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Column 3 of A295275.

Examples

			Some solutions for n=7:
  0 1 0    1 0 0    0 0 0    1 0 0    0 1 0    0 1 1    0 0 0
  1 1 1    0 0 1    0 0 1    0 1 0    1 0 0    1 0 0    1 0 0
  0 1 0    0 0 0    0 0 0    1 0 0    0 0 1    1 0 0    0 0 1
  1 0 0    1 0 0    1 0 1    1 0 0    0 0 1    0 0 0    0 0 0
  0 0 1    0 1 0    0 0 0    0 0 0    1 1 0    1 0 0    0 1 0
  1 0 0    1 0 0    0 1 0    0 0 0    0 0 0    0 0 1    1 0 0
  0 1 1    0 1 1    0 0 0    0 0 0    1 0 1    1 0 0    0 0 0
		

Crossrefs

Cf. A295275.

Formula

Empirical: a(n) = 2*a(n-1) + 10*a(n-2) + 20*a(n-3) + 17*a(n-4) - a(n-5) - 9*a(n-6) - 12*a(n-7) - a(n-8) - a(n-9) + a(n-10).
Empirical formula is true: see link. - Robert Israel, Nov 19 2017

A295271 Number of n X 4 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1s.

Original entry on oeis.org

13, 98, 811, 6659, 54773, 449827, 3697742, 30386185, 249719021, 2052217315, 16865303569, 138600705864, 1139033988179, 9360690397437, 76927054505407, 632193927094967, 5195430458657358, 42696546916624813, 350884326612255131, 2883601123790880675, 23697711212919539231, 194750068617952556626, 1600474783664067960559, 13152855612946330563815, 108091431705620580695441
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Column 4 of A295275.

Examples

			Some solutions for n=4:
..1..1..0..1....1..0..1..0....0..0..0..1....0..1..0..1....0..1..0..0
..0..0..1..0....0..0..0..1....0..0..0..0....1..0..1..0....1..0..1..0
..1..0..1..0....0..0..0..0....1..0..0..0....0..1..1..1....0..0..0..1
..0..0..0..0....0..0..0..1....0..1..0..1....1..0..1..0....0..1..0..1
		

Crossrefs

Cf. A295275.

Programs

  • Maple
    R:= [13, 98, 811, 6659, 54773, 449827, 3697742, 30386185, 249719021, 2052217315, 16865303569, 138600705864, 1139033988179, 9360690397437, 76927054505407, 632193927094967]:
    rec:= a(n) = 4*a(n-1) +27*a(n-2) +63*a(n-3) +14*a(n-4) -110*a(n-5) -43*a(n-6) -45*a(n-7) +89*a(n-8) -150*a(n-9) +89*a(n-10) -126*a(n-11) +72*a(n-12) -30*a(n-13) +8*a(n-14) -2*a(n-15) +a(n-16):
    f:= gfun:-rectoproc({rec,seq(a(i)=R[i],i=1..16)},a(n),remember):
    map(f, [$1..40]); # Robert Israel, Nov 19 2017
  • Mathematica
    a = DifferenceRoot[Function[{a, n},
    {-a[n] + 2 a[n+1] - 8 a[n+2] + 30 a[n+3] - 72 a[n+4] + 126 a[n+5] - 89 a[n+6] + 150 a[n+7] - 89 a[n+8] +
       45 a[n+9] + 43 a[n+10] + 110 a[n+11] - 14 a[n+12] - 63 a[n+13] - 27 a[n+14] - 4 a[n+15] + a[n+16] == 0,
       a[1] == 13, a[2] == 98, a[3] == 811, a[4] == 6659,
       a[5] == 54773, a[6] == 449827, a[7] == 3697742, a[8] == 30386185,
       a[9] == 249719021, a[10] == 2052217315, a[11] == 16865303569, a[12] == 138600705864,
       a[13] == 1139033988179, a[14] == 9360690397437, a[15] == 76927054505407, a[16] == 632193927094967}]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 27 2022, after Robert Israel *)

Formula

Empirical: a(n) = 4*a(n-1) +27*a(n-2) +63*a(n-3) +14*a(n-4) -110*a(n-5) -43*a(n-6) -45*a(n-7) +89*a(n-8) -150*a(n-9) +89*a(n-10) -126*a(n-11) +72*a(n-12) -30*a(n-13) +8*a(n-14) -2*a(n-15) +a(n-16).
From Robert Israel, Nov 19 2017: (Start)
Empirical formula confirmed (see link).
G.f.: (13*x + 46*x^2 + 68*x^3 - 50*x^4 - 116*x^5 - 93*x^6 + 31*x^7 - 28*x^8 - 60*x^9 + 2*x^10 - 73*x^11 + 51*x^12 - 22*x^13 + 7*x^14 - x^15 + x^16) / (1 - 4*x - 27*x^2 - 63*x^3 - 14*x^4 + 110*x^5 + 43*x^6 + 45*x^7 - 89*x^8 + 150*x^9 - 89*x^10 + 126*x^11 - 72*x^12 + 30*x^13 - 8*x^14 + 2*x^15 - x^16).
(End)

A295272 Number of nX5 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1s.

Original entry on oeis.org

24, 291, 4035, 54773, 748740, 10203847, 139221499, 1898916677, 25902054180, 353312300646, 4819296560043, 65736776328102, 896671271822835, 12230890096966674, 166833355609514988, 2275661718111926504
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Column 5 of A295275.

Examples

			Some solutions for n=4
..1..0..1..0..1....1..0..1..0..0....0..1..0..0..0....1..0..1..0..1
..0..0..0..1..0....0..0..0..0..0....1..0..1..0..1....1..0..0..1..0
..0..0..1..1..1....1..0..0..0..0....1..0..1..0..1....0..1..0..0..1
..1..0..0..1..0....0..0..0..1..1....0..1..0..1..0....1..0..1..0..0
		

Crossrefs

Cf. A295275.

Formula

Empirical: a(n) = 5*a(n-1) +84*a(n-2) +421*a(n-3) +716*a(n-4) -1544*a(n-5) -7895*a(n-6) -11069*a(n-7) +23659*a(n-8) +46894*a(n-9) -28597*a(n-10) -25649*a(n-11) -112201*a(n-12) +282924*a(n-13) -604659*a(n-14) +1353567*a(n-15) -2132282*a(n-16) +2688487*a(n-17) -2990791*a(n-18) +2796525*a(n-19) -2113112*a(n-20) +1443409*a(n-21) -944144*a(n-22) +464982*a(n-23) -217099*a(n-24) +125161*a(n-25) -1805*a(n-26) -32202*a(n-27) +26125*a(n-28) -18772*a(n-29) -1914*a(n-30) -838*a(n-31) +1685*a(n-32) +2105*a(n-33) -329*a(n-34) -147*a(n-35) -176*a(n-36) +64*a(n-37) +7*a(n-38) +a(n-39) -a(n-40)

A295273 Number of nX6 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1s.

Original entry on oeis.org

44, 865, 19997, 449827, 10203847, 230659662, 5221177246, 118139247475, 2673342943199, 60493860184777, 1368887903616187, 30975935104352291, 700940389558441876, 15861259863124103232, 358917220084448007191
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Column 6 of A295275.

Examples

			Some solutions for n=3
..0..1..0..0..0..0....1..0..1..1..0..0....1..0..0..0..1..1....0..1..0..1..0..0
..0..0..1..1..0..0....0..0..0..0..0..1....0..0..0..1..0..0....1..1..1..0..0..1
..0..1..0..0..1..0....0..1..1..0..0..1....0..0..0..0..1..1....0..1..0..1..1..0
		

Crossrefs

Cf. A295275.

Formula

Empirical recurrence of order 78 (see link above)

A295274 Number of nX7 0..1 arrays with each 1 horizontally or vertically adjacent to 0, 1 or 4 1s.

Original entry on oeis.org

81, 2570, 99245, 3697742, 139221499, 5221177246, 196091375073, 7361533108317, 276386201580189, 10376697508977992, 389585088134351369, 14626667590533685932, 549146940474831592906, 20617295057949494189434
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2017

Keywords

Comments

Column 7 of A295275.

Examples

			Some solutions for n=3
..0..1..0..0..0..0..1....0..0..1..0..0..0..0....0..0..1..0..1..0..1
..0..0..1..0..0..0..0....0..0..1..0..1..0..1....0..1..0..1..1..1..0
..0..0..0..0..1..1..0....1..1..0..0..0..0..1....0..0..1..0..1..0..0
		

Crossrefs

Cf. A295275.
Showing 1-7 of 7 results.