This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295288 #25 Dec 25 2022 13:59:24 %S A295288 1,5,19,62,184,512,1360,3488,8704,21248,50944,120320,280576,647168, %T A295288 1478656,3350528,7536640,16842752,37421056,82706432,181927936, %U A295288 398458880,869269504,1889533952,4093640704,8841592832,19042140160,40902852608 %N A295288 Binomial transform of the centered triangular numbers A005448. %C A295288 The sequence is column 3 of triangle in A207630. %C A295288 First difference is given by A055818(n+3,3) for n > 0. %D A295288 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994. %H A295288 G. C. Greubel, <a href="/A295288/b295288.txt">Table of n, a(n) for n = 0..1000</a> %H A295288 C. Corsani, D. Merlini, and R. Sprugnoli, <a href="https://doi.org/10.1016/S0012-365X(97)00110-6">Left-inversion of combinatorial sums</a>, Discrete Mathematics, 180 (1998) 107-122. %H A295288 Luis Manuel Rivera, <a href="https://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv:1406.3081 [math.CO], 2014. %H A295288 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8). %F A295288 G.f.: (1 - x + x^2)/(1 - 2*x)^3. %F A295288 a(n+3) = 8*a(n) - 12*a(n+1) + 6*a(n+2). %F A295288 a(n+1) = 2*a(n) + 3*(n + 2)*2^(n-1). %F A295288 a(n+1) = 2*a(n) + 3*A001792(n) = 2*a(n) + A001787(n+2) - A001792(n). %F A295288 a(n) = (3*n^2 + 9*n + 8)*2^(n - 3). %F A295288 a(n) = (1/8)*A077588(n+2)*A000079(n). %e A295288 a(0) = (3*0^2 + 9*0 + 8)*2^(-3) = 8/8 = 1. %p A295288 A:=n->(3*n^2+9*n+8)*2^(n-3); seq(A(n), n=0..70); %t A295288 Table[(3 n^2 + 9 n + 8) 2^(n-3), {n, 0, 70}] %t A295288 LinearRecurrence[{6,-12,8}, {1,5,19}, 50] (* _G. C. Greubel_, Oct 17 2018 *) %o A295288 (Maxima) makelist((3*n^2 + 9*n + 8)*2^(n - 3), n, 0, 70); %o A295288 (PARI) a(n) = (3*n^2 + 9*n + 8)*2^(n - 3) \\ _Felix Fröhlich_, Nov 19 2017 %o A295288 (Magma) I:=[1,5,19]; [n le 3 select I[n] else 6*Self(n-1) -12*Self(n-2) +8*Self(n-3): n in [1..40]]; // _G. C. Greubel_, Oct 17 2018 %Y A295288 Cf. A000079, A001787, A001792, A005448, A055818, A077588, A207629, A207630. %K A295288 nonn,easy %O A295288 0,2 %A A295288 _Franck Maminirina Ramaharo_, Nov 19 2017