This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295332 #13 Feb 27 2019 12:28:35 %S A295332 1,1,5,71,289,360,1009,1369,6485,92159,375121,467280,1309681,1776961, %T A295332 8417525,119622311,486906769,606529080,1699964929,2306494009, %U A295332 10925940965,155269667519,632004611041,787274278560,2206553168161,2993827446721,14181862955045,201539908817351,820341498224449,1021881407041800,2864104312308049,3885985719349849,18408047189707445 %N A295332 Denominators of the continued fraction convergents to sqrt(13)/2 = A295330. %C A295332 The numerators are given in A295331. %C A295332 The continued fraction expansion of sqrt(13)/2 is [1, repeat(1, 4, 14, 4, 1, 2)]. %H A295332 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 1298, 0, 0, 0, 0, 0, -1). %F A295332 G.f.: (1 + x + 5*x^2 + 71*x^3 + 289*x^4 + 360*x^5 - 289*x^6 + 71*x^7 - 5*x^8 + x^9 - x^10) / ((1 - 3*x - x^2)*(1 + 3*x - x^2)*(1 + 3*x + 10*x^2 - 3*x^3 + x^4)*(1 - 3*x + 10*x^2 + 3*x^3 + x^4)). See A295331 for a hint for the derivation. Here the a(n) recurrence is the same as there but the inputs are a(0) = 1, a(-1) = 0, (a(-2) = 1). The unfactorized denominator is 1 - 1298*x^6 + x^12. %F A295332 a(n) = 1298*a(n-6) - a(n-12), n >= 12, with inputs a(0)..a(11). %e A295332 See A295331 for the first convergents. %Y A295332 Cf. A295330, A295331. %K A295332 nonn,frac,cofr,easy %O A295332 0,3 %A A295332 _Wolfdieter Lang_, Nov 20 2017