cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295335 a(n) = least k >= 0 such that n OR k is prime (where OR denotes the bitwise OR operator).

Original entry on oeis.org

2, 2, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 17, 16, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 5, 4, 1, 0, 1, 0, 5, 4, 9, 8, 1, 0, 9, 8, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 9, 8, 1, 0, 73, 72, 3, 2, 1, 0, 1, 0, 65, 64, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 43
Offset: 0

Views

Author

Rémy Sigrist, Nov 23 2017

Keywords

Comments

See A295609 for the corresponding prime numbers.
We can show that this sequence is well defined by using Dirichlet's theorem on arithmetic progressions.
a(n) = 0 iff n is prime.
For any n >= 0, n AND a(n) = 0 (where AND denotes the bitwise AND operator).
If a(n) = x + y with x AND y = 0, then a(n + x) = y.
This sequence has similarities with A007920: here we check n OR k, there we check n + k.
See A295520 for the XOR variant.
For any k > 0, a(2^(6*k)-1) >= 2^(6*k) (hence the sequence is unbounded).

Examples

			For n = 42, 42 OR 0 = 42 is not prime, 42 OR 1 = 43 is prime, hence a(42) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Block[{k = 0}, While[! PrimeQ@ BitOr[k, n], k++]; k], {n, 0, 84}] (* Michael De Vlieger, Nov 26 2017 *)
  • PARI
    avoid(n,i) = if (i, if (n%2, 2*avoid(n\2,i), 2*avoid(n\2,i\2)+(i%2)), 0) \\ (i+1)-th number k such that k AND n = 0
    a(n) = for (i=0, oo, my (k=avoid(n,i)); if (isprime(n+k), return (k)))

Formula

For any k > 1, a(2*k+1) = a(2*k)-1.