cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295341 The number of partitions of n in which at least one part is a multiple of 3.

This page as a plain text file.
%I A295341 #16 May 24 2022 08:13:27
%S A295341 0,0,0,1,1,2,4,6,9,14,20,29,41,57,78,106,142,189,250,327,425,549,705,
%T A295341 900,1144,1445,1819,2279,2844,3534,4379,5403,6648,8152,9969,12152,
%U A295341 14780,17920,21682,26163,31504,37842,45371,54270,64800,77211,91842,109031,129235,152897
%N A295341 The number of partitions of n in which at least one part is a multiple of 3.
%C A295341 From _Gus Wiseman_, May 23 2022: (Start)
%C A295341 Also the number of integer partitions of n with at least one part appearing more than twice. The Heinz numbers of these partitions are given by A046099. For example, the a(0) = 0 though a(8) = 9 partitions are:
%C A295341   .  .  .  (111)  (1111)  (2111)   (222)     (2221)     (2222)
%C A295341                           (11111)  (3111)    (4111)     (5111)
%C A295341                                    (21111)   (22111)    (22211)
%C A295341                                    (111111)  (31111)    (32111)
%C A295341                                              (211111)   (41111)
%C A295341                                              (1111111)  (221111)
%C A295341                                                         (311111)
%C A295341                                                         (2111111)
%C A295341                                                         (11111111)
%C A295341 (End)
%F A295341 a(n) = A000041(n)-A000726(n).
%e A295341 From _Gus Wiseman_, May 23 2022: (Start)
%e A295341 The a(0) = 0 through a(8) = 9 partitions with a part that is a multiple of 3:
%e A295341   .  .  .  (3)  (31)  (32)   (6)     (43)     (53)
%e A295341                       (311)  (33)    (61)     (62)
%e A295341                              (321)   (322)    (332)
%e A295341                              (3111)  (331)    (431)
%e A295341                                      (3211)   (611)
%e A295341                                      (31111)  (3221)
%e A295341                                               (3311)
%e A295341                                               (32111)
%e A295341                                               (311111)
%e A295341 (End)
%t A295341 Table[Length[Select[IntegerPartitions[n],MemberQ[#/3,_?IntegerQ]&]],{n,0,30}] (* _Gus Wiseman_, May 23 2022 *)
%t A295341 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{___,x_,x_,x_,___}]&]],{n,0,30}] (* _Gus Wiseman_, May 23 2022 *)
%Y A295341 The complement is counted by A000726, ranked by A004709.
%Y A295341 These partitions are ranked by A354235.
%Y A295341 This is column k = 3 of A354234.
%Y A295341 For 2 instead of 3 we have A047967, ranked by A013929 and A324929.
%Y A295341 For 4 instead of 3 we have A295342, ranked by A046101.
%Y A295341 A000041 counts integer partitions, strict A000009.
%Y A295341 A046099 lists non-cubefree numbers.
%Y A295341 Cf. A001522, A006918, A064410, A064428, A117485, A188674, A325187, A325534.
%K A295341 nonn
%O A295341 0,6
%A A295341 _R. J. Mathar_, Nov 20 2017