This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295341 #16 May 24 2022 08:13:27 %S A295341 0,0,0,1,1,2,4,6,9,14,20,29,41,57,78,106,142,189,250,327,425,549,705, %T A295341 900,1144,1445,1819,2279,2844,3534,4379,5403,6648,8152,9969,12152, %U A295341 14780,17920,21682,26163,31504,37842,45371,54270,64800,77211,91842,109031,129235,152897 %N A295341 The number of partitions of n in which at least one part is a multiple of 3. %C A295341 From _Gus Wiseman_, May 23 2022: (Start) %C A295341 Also the number of integer partitions of n with at least one part appearing more than twice. The Heinz numbers of these partitions are given by A046099. For example, the a(0) = 0 though a(8) = 9 partitions are: %C A295341 . . . (111) (1111) (2111) (222) (2221) (2222) %C A295341 (11111) (3111) (4111) (5111) %C A295341 (21111) (22111) (22211) %C A295341 (111111) (31111) (32111) %C A295341 (211111) (41111) %C A295341 (1111111) (221111) %C A295341 (311111) %C A295341 (2111111) %C A295341 (11111111) %C A295341 (End) %F A295341 a(n) = A000041(n)-A000726(n). %e A295341 From _Gus Wiseman_, May 23 2022: (Start) %e A295341 The a(0) = 0 through a(8) = 9 partitions with a part that is a multiple of 3: %e A295341 . . . (3) (31) (32) (6) (43) (53) %e A295341 (311) (33) (61) (62) %e A295341 (321) (322) (332) %e A295341 (3111) (331) (431) %e A295341 (3211) (611) %e A295341 (31111) (3221) %e A295341 (3311) %e A295341 (32111) %e A295341 (311111) %e A295341 (End) %t A295341 Table[Length[Select[IntegerPartitions[n],MemberQ[#/3,_?IntegerQ]&]],{n,0,30}] (* _Gus Wiseman_, May 23 2022 *) %t A295341 Table[Length[Select[IntegerPartitions[n],MatchQ[#,{___,x_,x_,x_,___}]&]],{n,0,30}] (* _Gus Wiseman_, May 23 2022 *) %Y A295341 The complement is counted by A000726, ranked by A004709. %Y A295341 These partitions are ranked by A354235. %Y A295341 This is column k = 3 of A354234. %Y A295341 For 2 instead of 3 we have A047967, ranked by A013929 and A324929. %Y A295341 For 4 instead of 3 we have A295342, ranked by A046101. %Y A295341 A000041 counts integer partitions, strict A000009. %Y A295341 A046099 lists non-cubefree numbers. %Y A295341 Cf. A001522, A006918, A064410, A064428, A117485, A188674, A325187, A325534. %K A295341 nonn %O A295341 0,6 %A A295341 _R. J. Mathar_, Nov 20 2017