cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295344 Maximum number of lattice points inside and on a circle of radius n.

This page as a plain text file.
%I A295344 #32 Dec 27 2017 02:02:26
%S A295344 1,5,14,32,52,81,116,157,208,258,319,384,457,540,623,716,812,914,1025,
%T A295344 1142,1268,1396,1528,1669,1816,1976,2131,2300,2472,2650,2836,3028,
%U A295344 3228,3436,3644,3859,4080,4314,4548,4792,5038,5289,5555,5818,6092,6376,6668,6952
%N A295344 Maximum number of lattice points inside and on a circle of radius n.
%C A295344 Maximum number of lattice points (i.e., points with integer coordinates) in the plane that can be covered by a circle of radius n.
%C A295344 a(n) >= A000328(n).
%C A295344 Conjecture: sequence contains infinitely many terms that are divisible by 4.
%D A295344 B. R. Srinivasan, Lattice Points in a Circle, Proc. Nat. Inst. Sci. India, Part A, 29 (1963), pp. 332-346.
%F A295344 a(n) = Pi*n^2 + O(n), as n goes to infinity.
%F A295344 a(n) = A123690(2*n) for n >= 1.
%e A295344 For a circle centered at the point (x, y) = (1/2, 1/4) with radius 2, there are 14 lattice points inside and on the circle.
%e A295344 .
%e A295344 .     Center             # Pts in/
%e A295344 .    x      y    Radius  on circle
%e A295344 .  -----  -----  ------  ---------
%e A295344 .    0      0       1         5
%e A295344 .   1/2    1/4      2        14
%e A295344 .   1/2    1/2      3        32
%e A295344 .   1/2    1/2      4        52
%e A295344 .    0      0       5        81
%e A295344 .   1/2    1/3      6       116
%e A295344 .   2/5    1/5      7       157
%e A295344 .   1/2    1/2      8       208
%e A295344 .   1/2    2/9      9       258
%e A295344 .  20/47  19/56    10       319
%e A295344 .   1/2    1/2     11       384
%e A295344 .  11/23   7/20    12       457
%e A295344 .   1/2    1/2     13       540
%e A295344 .  10/21   3/13    14       623
%e A295344 .   1/2    1/2     15       716
%e A295344 .   1/2    1/2     16       812
%e A295344 .   2/5    2/5     17       914
%e A295344 .   3/8    5/14    18      1025
%e A295344 .   1/2    1/6     19      1142
%e A295344 .   9/19   8/17    20      1268
%o A295344 (PARI) L=List([]); for(n=0, 47, if(n>0, j=5, j=1); g=0; h=0; f=ceil(Pi*n^2); for(d=2, floor(f/2), for(c=1, floor(d/2), if(gcd(c, d)==1, for(e=d, d+1, if(e/f<=1/2, a=c/d; b=e/f; if(a+b>=1/2, t=0; for(x=-n, n+1, for(y=-n, n+1, z=(a-x)^2+(b-y)^2; if(z<=n^2,t++))); if(t>j, j=t; if(a>=b, g=a; h=b, g=b; h=a)))))))); print("a("n") = "j", the center of the circle is at point ("g", "h")."); listput(L, j)); print(); print(Vec(L));
%Y A295344 Cf. A000328, A123690, A291259.
%K A295344 nonn
%O A295344 0,2
%A A295344 _Arkadiusz Wesolowski_, Nov 20 2017
%E A295344 a(10) corrected by _Giovanni Resta_, Nov 24 2017