A295359 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 2*b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 14, 24, 41, 68, 112, 183, 298, 484, 786, 1275, 2064, 3342, 5409, 8754, 14166, 22923, 37092, 60019, 97116, 157138, 254257, 411398, 665658, 1077059, 1742720, 2819782, 4562505, 7382290, 11944798, 19327091, 31271892, 50598986
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that b(3) = 7 (least "new number") a(3) = a(1) + a(0) + b(2) + b(1) - 2* b(0) = 14 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - 2*b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295359 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments