A295360 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - 3*b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 12, 18, 27, 41, 63, 98, 155, 247, 392, 628, 1008, 1624, 2620, 4228, 6831, 11041, 17853, 28874, 46706, 75559, 122244, 197778, 319996, 517747, 837715, 1355433, 2193118, 3548520, 5741606, 9290093, 15031665, 24321723
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that b(3) = 7 (least "new number") a(3) = a(1) + a(0) + b(2) + b(1) - 3* b(0) = 12 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - 3*b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295360 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments