A295361 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) - b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 20, 40, 76, 134, 230, 386, 640, 1052, 1720, 2802, 4554, 7390, 11980, 19408, 31429, 50882, 82357, 133287, 215694, 349033, 564781, 913870, 1478709, 2392639, 3871410, 6264113, 10135589, 16399770, 26535429, 42935271, 69470774, 112406121
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that b(3) = 7 (least "new number") a(3) = a(1) + a(0) + b(2) + 2*b(1) - b(0) = 20 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2*b[n - 2] - b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295361 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments