A295362 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) - b(n-3), where a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 5, 8, 10, 14, 19, 25, 34, 49, 71, 106, 162, 253, 398, 632, 1010, 1621, 2610, 4208, 6793, 10975, 17741, 28688, 46400, 75058, 121428, 196454, 317848, 514267, 832079, 1346309, 2178350, 3524620, 5702930, 9227509, 14930397, 24157863
Offset: 0
Examples
a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2, b(1) = 4, b(2) = 6, so that b(3) = 7 (least "new number") a(3) = a(2) + a(1) + b(2) - b(1) - b(0) = 8 Complement: (b(n)) = (2, 4, 6, 7, 9, 11, 12, 13, 15, 16, 17, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; a[2] = 5; b[0] = 2; b[1] = 4; b[2] = 6; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] - b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295362 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments