A295363 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 12, 35, 77, 154, 287, 513, 890, 1513, 2546, 4241, 6997, 11478, 18747, 30531, 49620, 80531, 130571, 211564, 342641, 554757, 897998, 1453405, 2352105, 3806266, 6159183, 9966319, 16126432, 26093743, 42221231
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that b(3) = 5 (least "new number") a(2) = a(1) + a(0) + b(0)*b(1) = 12 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]*b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295363 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments