A295365 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 2, a[2] = 3, b(0) = 4, b(1) = 5, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 3, 20, 41, 82, 147, 256, 433, 722, 1191, 1952, 3185, 5182, 8415, 13648, 22117, 35823, 58002, 93891, 151962, 245925, 397962, 643965, 1042008, 1686057, 2728152, 4414299, 7142544, 11556939, 18699582
Offset: 0
Examples
a(0) = 1, a(1) = 2, a[2] = 3, b(0) = 4, b(1) = 5, b(2) = 6, so that b(2) = 7 (least "new number") a(3) = a(2) + a(1) + b(2) + b(1) + b(0) = 20 Complement: (b(n)) = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; b[2]=6; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + b[n - 3]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; z = 32; u = Table[a[n], {n, 0, z}] (* A295365 *) v = Table[b[n], {n, 0, 10}] (* complement *)
Formula
a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
Comments